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a b s t r a c t

The use of probability distribution functions to describe reliability-worth input parameters is fairly new
compared to using average values. Reliability-worth indices of power systems are frequently calculated
as average values and convey little information about risk. In this paper beta probability distribution
function was used to model time-dependent customer interruption costs as an input parameter to reli-
ability-worth analyses of power systems. Time-sequential Monte-Carlo simulation technique that can
handle time dependence of the input parameters was employed in the analysis. The results revealed that
more information can be derived from the reliability-worth indices when probability distributions are
used to describe the reliability-worth input and output parameters.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Power systems comprising generation, transmission and distri-
bution, are subjected to many adverse events such as accidents,
random component failures and weather conditions resulting in
power interruptions. These kinds of events are beyond the control
of a utility, but they can be taken into account when deciding the
level of supply reliability at which the system should operate. In
order to relate investment costs to the level of supply reliability,
it is necessary to quantify reliability in monetary terms. In reliabil-
ity cost and worth analyses of power systems, the reliability-worth
experienced by customers is compared with the cost incurred by
the grid owner [1]. Customer interruption cost (CIC) is used as a
substitute in the assessment of reliability-worth in electric power
systems [2]. Numerous studies have been conducted to provide
estimates of CICs and a wide range of methodologies has evolved.
However, the use of different probability distribution functions
(PDFs) to model CIC for planning and operating reliability-worth
studies is uncommon.

Reliability-worth indices are determined for a given system or
component and it is the interpretation of these indices that sheds
light on how reliable the system is. Most reliability cost and worth
analyses in previous research use average values for the input
parameters and present the reliability-worth outputs as estimates
of the mean values. Using average values for the input and output
parameters ignore the shape of the parameter PDF. Several indices
have been proposed for reliability-worth studies (e.g. expected CIC
ll rights reserved.
(ECOST), interrupted energy assessment rate (IEAR) and cost of un-
served energy (CUE)). The selection and definition of these indices
are very much dependent on the methodologies used and the pur-
pose of the study. To estimate consequences for the customers, the
reliability-worth index ECOST is computed and presented in this
paper. The work presented in this paper was carried out on a
power distribution network.

Several techniques have been developed for use in evaluation of
reliability-worth indices of a given power system. The techniques
can however be grouped as either deterministic or probabilistic.
Deterministic (also termed analytical) techniques have been used
for many years in reliability-worth analyses of radial distribution
systems to calculate the average load point reliability-worth indices
[3]. The average load point reliability-worth indices are estimated
using a mathematical model that uses average input parameter
values (e.g. repair time, switching time, CIC values, etc.). They are
limited for the work proposed in this paper because it is almost
impossible to apply these techniques when non-constant parame-
ter inputs are considered.

Probabilistic techniques have advantage over deterministic
techniques in that they are able to account for the stochastic
behaviour of power networks [4,5]. The main probabilistic tech-
niques are simulations, the most important being Monte-Carlo
simulations (MCSs). The time sequential MCS plays an important
role in the work presented here because it takes into account the
stochastic nature of power systems in a chronological order. This
approach allows for the inclusion of the time dimension in the reli-
ability-worth analysis [6]. The inputs of a reliability analysis, such
as component failure rates, restoration times and CIC values, are
treated as random rather than average values and are allowed to
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take on values according to chosen PDF [7,8]. The performance of
time sequential MCS is independent of the size of the network
being analysed.

For the purpose of this research, all cost are given in South Afri-
can Rand (R). 1€ (Euro) is equivalent to R10 approximately.
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Fig. 1. Individual customer damage function models for different customer sectors
[14].
2. Measuring CICs

Several studies have been conducted to provide estimates of
CICs. There is however, no universal agreement on the appropriate-
ness of methodologies applicable to particular situations nor on the
interpretation of the results obtained, but some appear to be more
acceptable and useful to the industry than others.

CICs are challenging to estimate since they are functions of many
different factors [9]. The customer survey approach [10], in which
customers are specifically interviewed, is regarded by many
researchers as the most practical and reliable process to obtain
these costs. The strength of the method is that customers are in
the best position to know their own costs [11–13]. This is also sup-
ported by the results from both analytical and blackout case studies,
which show that for interruption cost assessment to be realistic, the
cost information should be customer specific [11]. However, the
main drawback with survey methods is that the results are quite
sensitive to the survey design and implementation [1,10].

The impact of a power interruption is defined by the inter-
rupted activities due to the interruption [14]. Customers use elec-
tricity in different ways that characterises their sectors. Therefore,
CICs are assessed by surveys for different customer sectors, usually
according to a particular standardized industrial classification (SIC)
[15–17]. For example, customers can be divided into: residential,
industrial, governmental and public, agricultural, and commercial
customers. To be able to quantify how disrupted activities affect
the interruption cost, customer valuations of these effects are also
needed. In customer surveys, these valuations are often included
and made on an inconvenience scale [14,18].

With a customer survey, only the direct rather than indirect costs
are collected. In direct costing methods, customers are asked to iden-
tify the impact of a particular hypothetical outage scenario and the
associated costs [10,15]. Depending on whether social or economic
costs are collected, different survey methods are used. For all cus-
tomer sectors, less so for the residential sector, the direct costs
mostly have an economic impact. Therefore, a direct costing method
is recommended for these customer sectors [19]. Residential surveys
use contingent valuation methods that are designed to capture more
intangible costs such as inconveniences. In the contingent valuation
methods, customers are asked to state how much they are ‘willing to
pay’ (WTP) to avoid an outage or how much they are ‘willing to ac-
cept’ (WTA) in compensation for an outage. A direct costing method
can also be applied to the residential sector. It is recommended that
several different methods be used for the residential sector [19].

Performing a customer survey is a time-consuming and expen-
sive task that requires a large effort to collect a sufficient data sam-
ple [10]. Interruption cost data derived from surveys therefore
includes a small sample of the possible outage events. Commonly,
only the interruption costs for a worst case scenario is surveyed for
a few outage durations [20]. Customer surveys will always gener-
ate some ‘‘bad’’ data, such as unrealistically high cost estimates.
Therefore statistical analyses of the raw data should be conducted
before the data are used [10]. There are procedures for identifying
outliers [21].

The costs incurred due to power supply interruptions can be
presented as a function of outage duration, and when expressed
in this form it is known as a customer damage function (CDF)
[22]. The CDF can be determined for a group of customers belong-
ing to particular sector. In these cases, the interruption cost versus
duration plots are referred to as individual customer damage func-
tion (ICDF). ICDF are usually based on CIC data for the worst case
scenario as shown in Fig. 1 [18].

Two different procedures for calculating the CDFs are: the aver-
age process and the aggregating process [23]. In the average pro-
cess, the CIC data from the survey is first normalized. After
normalization, an average value of the normalized cost for each
customer sector and surveyed duration is calculated. The second
procedure, the aggregating process, first summarizes the CIC data
for each customer sector and duration. The result is then normal-
ized by division of the summation of normalizing factors of each
sector [10,20]. Common normalization factors are total annual
electricity consumption, peak load or energy not supplied.

In Fig. 1, the normalization factor is average monthly energy
cost and the unit of the ICDFs is therefore ‘Rand’ per ‘Rand spent
on monthly energy cost’ [18,24,25]. The normalization process will
give the values of the CDF marked with different symbols in Fig. 1.
To estimate the CIC for any duration, linear interpolation is used
between these values. Since the CIC data is only obtained for a
worst case scenario, the CDF shows how the worst case cost varies
with interruption duration.

The linearization of the costs with the duration of the interrup-
tion does not describe the dispersed nature of CIC that occurs for
individual consumers as well as for the different durations
[26,27]. It is therefore unrealistic to use average CIC values for the
different durations considered and to assume the CIC value to have
the same value 100% of the time. For realistic analyses, variability in
CIC cannot be ignored and should be included in the model being
used to represent it. Since PDFs allow for variation about the mean,
they are a good tool for describing statistical variation (uncertainty)
in the CIC modeling, from which the significance of including statis-
tical variation in CIC modeling becomes clear.

Several PDFs have been identified for use in CIC analyses. Some
include the Normal, Poisson, Weibull and Beta distributions
[14,24,28]. However, relatively little work has been published on
estimating reliability-worth indices associated with CIC derived
from PDF. A number of multiplicative models have been applied
to capture the time dependence of CIC. Studies show that the time
dependencies in inputs are important when estimating the annual
CIC, and ignoring them may lead to different planning and opera-
tional decisions [29].

2.1. Application of PDFs to reliability-worth outputs

The reliability-worth indices of a power system are stochastic
values dependent on a network’s topology and operating philosophy
and conditions. The average values show how reliable the system is
on average, but it is interesting to investigate the risk of extreme
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cases. The level of skewness of the PDF of an index is important when
interpreting the index [30,31]. Without a PDF, extreme conse-
quences of power interruptions on consumers are neglected. Even
though the tail of a PDF represents events that occur very infre-
quently the consequences of these events may be severe and must
be considered when a system is analysed. PDF can be used to show
how quantifying the probability of expected interruption cost
(ECOST) within certain boundaries is important in the assessment
of system reliability-worth.
3. Selection of PDF

Most PDFs are limited in the shapes they can exhibit, and are
therefore used for specific data sets. The normal PDF is the most
frequently used in estimating CIC but has infinite negative and po-
sitive range. In Refs. [26,27], it was concluded that it is impossible
to model CIC data using a PDF which exhibit the same shape like
the Normal distribution. This is because of the skewness of the
CIC data in some of the studied durations. The aim is not to com-
plicate the CIC data analysis by using different PDFs for different
durations, but to make sure the CIC data is estimated accurately
in a very simple way. The Weibull and Gamma distributions exhi-
bit different shapes, however, their limitation is that they do not
have a finite positive range which the beta PDF have [30,31].
Extensive research has been carried out, using the beta PDF. For
example, in South Africa, it has been used to perform voltage drop
calculations along distribution feeders. It is now the prescribed
method for residential LV-feeder analysis in South Africa [32]. As
far as CIC analyses are concerned, only preliminary work has been
done to investigate the appropriateness of the PDF in CIC data fit-
ting [24]. In this study the beta PDF was therefore used to model
the CIC data.

The beta distribution describes the distribution of a random
variable that lies within the interval (0,1) [33] and is defined by
expressions (1) and (2). The beta distribution is very versatile in
the shapes it can take. Fig. 2 illustrates some of these, given differ-
ent values of its shape parameters. The distribution has a finite
range and the data can be scaled using the maximum value of
the data set or some greater value.

FðxÞ ¼ Xa�1ð1� XÞb�1

BðabÞ ð1Þ

for 0 6 X 6 1, a > 0 and b > 0 where

BðabÞ ¼
Z 1

0
Xa�1ð1� XÞb�1dX ð2Þ

where a and b are the shape parameters.
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Fig. 2. Different shapes shown by beta PDF for different shape parameters, a and b.
Various methods have been developed for estimating the
parameters of the beta PDF. The most commonly used have been
the method of moments, maximum likelihood method and pro-
gram evaluation and review technique (PERT). From Ref. [33], both
the method of moments and maximum likelihood were found to
be the most efficient in determining the beta PDF parameters.
The maximum likelihood methods requires extensive analysis or
iterations to get the beta parameters. The method of moments
was preferred over the maximum likelihood method because of
its simple way of calculating the beta parameters when the mean
and standard deviation values are available. Therefore, the method
of moments has been used in the present study. Given the first mo-
ment about the origin or the mean (l) and the second moment
about the mean or the standard deviation (r) of a data set, the
shape parameters of the corresponding beta distribution, for a gi-
ven scaling factor C, can be computed using expressions (3) and (4).

a ¼ Cl� l2 � r2

Cr2 ð3Þ
b ¼ ðC � lÞðCl� l2 � r2Þ
Cr2 ð4Þ

For more information on the beta distribution and how to derive the
above equations the reader is referred to Refs. [30,33]. The beta
PDFs provide the input data and output for reliability-worth analy-
sis as illustrated in the following small case study.
4. Case study

The RBTS [34] is an educational test system developed by the
Power System Research Group at the University of Saskatchewan.
The small radial distribution power system network used in the
case study is taken from RBTS Bus 2:Feeder 3 as shown in Fig. 3.
The power system network consists of one breaker F3 on the
11 kV side of a 33/11 kV transformer.

It has six 11/0.4 kV transformers, T1 to T6, one at each load
point. These transformers have fuses that prevent transformer fail-
ure to affect the rest of the power system network. At each T-junc-
tion or branch isolators are located on both sides of lines and
breakers, which enables the isolation of these components. The
analysis considers unreliability caused by failure of station trans-
formers, main breaker and distribution lines. The system is as-
sumed to be in steady state such that the effect of failure of
protection devices is neglected.

The reliability data used in the analysis is presented in Table 1
and is taken from [34]. The PDF for the time to failure was assumed
to be exponential with the failure rate given in Table 1. The failure
rate of overhead lines is calculated at 0.065 failures per year per
kilometer. The PDF for load point interruption durations (repair/
replacement time, switching time) is assumed to be lognormal [7].

The load model used in this paper is given in terms of the var-
iation of average monthly energy cost for the different segments
investigated and was adopted from similar work as in Refs.
[24,25]. A working month of 30 days was assumed for all months.
Table 2 presents the load point data used for the reliability-worth
analysis in this paper.

In this paper a multiplicative approach with time varying cost
factors for modeling temporal variations in CIC is taken. The tem-
poral variations of CIC with time of day, day of week and month
are modeled using two time-varying cost weight factors. This ap-
proach is described in detail in [14,24,29]. In this paper the influ-
ence on CIC due to time of day and day of week are combined
and modeled using the time of day/day of week weight factor,
fh/d while the influence due to month of year is modeled using
the month factor, fm. The normalized CIC for customer segments
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Table 1
RBTS component reliability parameters.

Component Description Failure rate per year
(f/yr)

Replacement/
repair time
(h)

Switching
time (h)

Distribution

Transformer 11/0.4 kV 0.015 10.0 (1) 1.00 (0.4) Lognormal
Breaker 11 kV 0.006 4.0 (0.4) 1.00 (0.4) Lognormal
Transmission lines L1 and L8 0.065 5.0 (1) 1.00 (0.4) Lognormal

L2, L3 and L10 0.182 5.0 (1) 1.00 (0.4) Lognormal
L4 and L7 0.117 5.0 (1) 1.00 (0.4) Lognormal
L5, L6 and L9 0.0975 5.0 (1) 1.00 (0.4) Lognormal

The standard deviation of the distribution is given in brackets.

Table 2
Load point data.

Load point Number of
customers

Customer sector Average monthly
energy cost [Rand]

LP1 50 Commercial (retail) 2200
LP2 100 Industrial (garage) 2000
LP3 40 Industrial (clothing) 1150
LP4 150 Commercial (retail) 2200
LP5 60 Industrial (metal) 4500
LP6 90 Commercial (retail) 2200

50 Industrial (garage) 2000
Table 3
Beta parameters for summer weekday morning outage cost for the different
segments.

Customer Duration (scaling factor)
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due to power interruption of duration d occurring at time t is cal-
culated as:
sector
1 (30) 2 (50) 4 (100) 8 (150)

Retail 2.301 4.056 2.301 2.142
COSTAðt;dÞ ¼ fh=dfmCAðdÞ ð5Þ

(81.881) (194.782) (131.458) (56.070)

Clothing 2.090
(26.405)

2.024
(16.444)

1.864
(16.624)

1.474
(9.417)

Metal 0.295
(1.610)

0.146
(0.688)

0.288
(1.758)

0.219
(1.273)

Garage 1.165
(46.069)

1.527
(47.421)

1.161
(36.780)

2.392
(59.250)

NB: Beta parameters are given as a (b), where b value is in brackets.
where fh/d is the time-varying cost weight factor for hourly devia-
tion with respect to day of week from the reference time for cus-
tomer segment A, fm is the time-varying cost weight factor for
monthly deviation from reference time for customer segment A,
CA(d) is the normalized reference (worst case) interruption cost
for customer segment A due to a power interruption of duration d.
Both cost weight factors model the deviation of power interrup-
tion from the surveyed reference outage event. When a power
interruption occurs at the reference time both cost weight factors
are equal to unity, and the power interruption cost COST(t,d),
equals C(d). The reference cost C(d) can either be modeled using
the CDF approach or a PDF approach that captures the dispersion
in the cost data. The ICDF models in Fig. 1 were used to estimate
the CIC values. Uncertainty was applied to the CIC values of each
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customer sector by selecting random values from a specific beta
PDF using the parameters given in Table 3 and time variation in
CIC was applied by including the cost weight factors [24] in the
analysis.

4.1. Time-sequential Monte-Carlo simulation technique

The process used to assess the CIC of the RBTS is the time-
sequential Monte-Carlo simulation technique. The algorithm in
Ref. [24] is used in the analysis. Fig. 4 shows the detailed steps in
the form of a flow chart. The simulation algorithm used to analyse
the RBTS was developed using MATLAB�.

A base case analysis was first carried out on the network that
considers the use of the ICDF to model CIC for each sector. The
main aim of such an analysis is to provide a set of values for com-
parison with subsequent tests. In both analysis cases, a beta PDF
was derived from the index computed. This aimed to capture any
skewness in the distribution of the index.

5. Results

The 50 and 90-percentile values were determined from the per-
formance index PDFs. A 90 percentile value represents the value of
an index, such that risk of the actual value being above it is 10%. A
50-percentile value allows for a 50–50 chance for variation above
and below the actual value and, for both a Normal and beta PDF,
this value would correspond to the median of the data being de-
scribed. Figs. 5–8 show the shapes of the ECOST index PDFs derived
from the base case analysis and also from the analysis with time
variation and uncertainty considered. It is clear from the shapes
of the PDFs, corresponding to the base case, that there exists inher-
ent skewness in the performance indices. Using average values to
represent parameters neglects the distribution of the given
parameters and excludes information on the variance and skew-
ness of the resultant index. Table 4 shows the 50 and 90-percentile
values of the six load point indices computed. Considering the base
case values, a significant difference in the index values is noted in
comparison with the results from the other two scenarios. This is
attributed to the inclusion of time varying cost factors in estimat-
ing CIC. The values of the index reduce after inclusion of variability
to the analysis. The percentage differences in 50 and 90-percentile
values for each index are presented in Table 5.

5.1. Interpretation of results

There is a significant difference in the ECOST values between the
base case and the corresponding data sets. The 27–58% reduction
in the ECOST index values after the inclusion of time variation in
CIC values indicate how sensitive the index is to variability in
reliability-worth inputs. The significant difference observed is
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indicative of a need for inclusion of time variation in CIC modeling.
Common reliability-worth analyses assume CIC values to be con-
stant for the different times of occurrence of power interruptions
of the same duration. As mentioned earlier, the activities of differ-
ent customers contribute to the variation of CIC values. Moreover,
the impact of power interruptions on customers not only depends
Table 4
Results obtained from the Pdf of the six load point performance index (kRand).

Risk value LP1 (%) LP2 (%) LP3

50 10 50 10 50

Base case 97.16 127.17 298.08 424.49 24
Time variation included 42.19 72.07 163.69 270.07 10
Time variation + uncertainty included 41.16 75.76 160.06 261.17 10
on the activities being interrupted but is also time dependent.
The analysis presented in this paper considered constant CIC values
for different times of occurrence of power interruptions of the same
duration – base case scenario. The reduction in index values
presented in Table 4 shows how the impact of time of occurrence
of power interruptions can be erroneously excluded in reliability-
worth analyses, and ignoring it may lead to different planning
and operational decisions. The time-line should be realistic and
consider only the period of power interruption and its time of
occurrence.

From Figs. 5–8, it is clear that the application of uncertainty to
the reliability-worth input (CIC), changes the level of skewness of
the PDFs. The fact that continuous PDFs were applied when
describing reliability-worth inputs should therefore be noted.
Average values have limited application when time dependent var-
iability is considered. Planners and utility owners usually have to
determine the level of network reinforcement and the cost at-
tached to each alternative. Realistic and accurate reliability-worth
analyses are critical to such decision making. Reliability cost and
worth analyses are used to determine where in a power grid the
reliability-worth (ECOST) exceeds cost of electric supply (reliability
cost). These decisions are based on index values that, as observed
from the results, have risk levels attached. Using average values
means planners and utilities allows for a 50% risk level on the val-
ues used. In many cases, this is not good enough, such as for imple-
mentation of efficient energy delivery techniques. For effectiveness
of these techniques, PDFs provide more information. This might in-
clude comparing low risk (high confidence) index values with the
high risk (low confidence) index values to justify network rein-
forcements. For example, from Table 4, the ECOST results with
uncertainty included indicate a 29.88% increase in ECOST index if
one decides to use 10% risk values over 50% risk values. The in-
crease in the risk cost can then be compared to the cost of imple-
menting a equipment upgrade. This translates the justification into
a rate of return analysis balancing capital expenditure against
reducing the impact of failures, presenting a financial case that
plant management is familiar with. The smaller the percentage in
cost difference, the easier it is to justify investment in the network.

Another issue ignored by the use of average values is the likeli-
hood of occurrence of extreme events. This can however be com-
puted by analyzing the tails of PDFs. It is clear that the ECOST
PDFs presented in this analysis with uncertainty considered are
right skewed. The two extremes for this PDF are high and low val-
ues for ECOST. For example, the PDF of LP5 implies that low values
of ECOST are more likely compared to high ECOST values. Compar-
ing with PDFs of LP6, the likelihood of very low ECOST is signifi-
cantly lower. However, it should be noted that while the values
of the ECOST index reduced in this analysis, application of different
statistical variations could cause different effects on the load point
index and therefore, on the overall system index. Load point con-
nection of customers with different characteristics e.g. ownership
of backup power supply, may lead to different ECOST distributions.
Since reliability-worth indices are sensitive to variability in the in-
puts as was shown by the results of this analysis, it is expected that
indices computed could either increase or, as was the case in this
analysis, decrease. The level of change is dependent on the system
being analysed and the variability applied.
(%) LP4 (%) LP5 (%) LP6 (%)

10 50 10 50 10 50 10

4.93 312.40 482.16 614.48 2436.80 3067.50 658.47 796.50
9.85 186.82 202.86 322.91 1196.00 1809.00 308.45 419.83
8.07 196.15 204.60 351.66 1152.90 2210.40 244.18 348.24



Table 5
Percentage differences in 50 percentile and 90 percentile values for all load points.

LP1 LP2 LP3 LP4 LP5 LP6

Base case 0.2360 0.2978 0.2160 0.2153 0.2056 0.1733
Time variation included 0.4146 0.3939 0.4120 0.3718 0.3389 0.2653
Time variation + uncertainty included 0.4567 0.3871 0.4490 0.4182 0.4784 0.2988
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6. Conclusions

Different sections of power systems are exposed to various risks
that must be accounted for when carrying out reliability-worth
analysis on the network. The work presented in this paper is on-
going. A preliminary analysis was carried out using time sequential
MCS on a test system (RBTS). It showed there is a need to move
from the conventional use of average values to PDFs. Not only do
PDFs account for various impact levels of power interruptions in
power system networks, thus allowing for day to day reliability-
worth analyses, they also enhance the interpretation of the index
computed. It was found that ignoring time variations in CICs and
taking the average values only, can severely underestimate the
risks of extreme (high and low) CIC values. The technique and re-
sults obtained from the analysis demonstrate that reliability-worth
indices can be predicted with a defined level of confidence.
Expressing the results in this way will allow non-engineering man-
agers to make meaningful managerial decisions about enhancing
power system infrastructure and back-up. It will also assist regula-
tors to determine rewards and penalties necessary to balance cost
or tariffs against reliability.
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